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Abstract
In this paper, we investigate the net voltage in the Josephson junction subject to a thermal noise,
a dc constant bias electric current and an ac time-periodic electric drive for the overdamped case
and underdamped case simultaneously. It is shown that, by increasing the thermal noise
strength, the net voltage can be decreased and increased several times as a function of the
driving frequency. In addition, noise-enhanced stability is found for the net voltage of the
junction.

1. Introduction

Nowadays, the net voltage and the dc current–voltage
characteristics for the electrical transport in Josephson
junctions (superconducting junctions) [1] subject to noise have
become more and more interesting [2–12]. It has been shown
that the asymmetric noise can produce a net voltage [2, 3] and
dc voltage rectification [4]. We have found that the correlated
symmetric noise (thermal noise and external perturbation
noise) can also induce a net voltage that stems from the
symmetry breaking induced by the correlation between the
internal thermal fluctuation and the external perturbation [3, 5].
Zapata et al proposed a device with three Josephson junctions
(a SQUID (superconducting quantum interference device)
ratchet), threaded by a magnetic flux and driven by a thermal
noise and a periodic signal [6], and studied the current–
voltage characteristics for this device. We investigated the
net voltage, the dc current–voltage characteristics and the
mean first passage time (or the exit time, or escape time)1

for the particles to escape over the fluctuating potential
barrier for this device in the case of thermal fluctuation,
together with the environmental perturbation [7]. In addition,
in [8], we investigated the chaotic-noisy electrical transport
in this device driven by thermal noise and oscillatory drive
for the underdamped case (thermal-inertial ratchet). Sterck
et al realized the device proposed by Zapata et al [6] and

1 For the Josephson junction, it has a periodic potential for the phase
difference across the junction [1]. Here the escape time (or exit time) is the
mean first passage time [18] for the particles to escape over one period of the
potential of the Josephson junction [7, 28, 29].

demonstrated the operation of those devices as very efficient
rocking ratchets [9]. In our recent publication [10], we
investigated the appearance of spatiotemporal noise and its
effect on the electrical transport for this device. In a very
recent paper [11], Kostur et al investigated the electrical
transport in a Josephson junction driven by thermal noise, a
constant bias force and a time-periodic signal (or oscillatory
drive). They observed some anomalous behavior for the
current (or flux) of the electrical transport as a function of
the constant bias force, i.e. absolute negative conductance
(ANC), negative differential conductance (NDC) and negative-
valued nonlinear conductance (NNC) (the phenomena of ANC,
NDC and NNC all belong to the category of negative mobility
phenomenon [12]).

In this paper, we will study the net voltage [2] for a
Josephson junction subject to thermal noise, a dc constant bias
electric current and an ac time-periodic drive (or oscillatory
signal), in the overdamped case and in the underdamped case
simultaneously (the underdamped case is the one investigated
by Kostur et al [11]), and will focus our investigation on the net
voltage as a function of the oscillatory driving frequency and
the thermal noise strength (Kostur et al [11] only considered
the physical characteristics for the current as a function of the
constant bias force for the underdamped case). It will show that
the net voltage can be decreased and increased several times
by increasing the thermal noise strength, at the peak positions
and the well positions, respectively, as a function of the driving
frequency. In addition, noise-enhanced stability will be found
by us for the net voltage.
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2. Overdamped case

We carry out our study on the Josephson junction whose phase
difference across the junction is a semiclassical variable and
which can be adequately described by the ‘resistively shunted
junction’ model [13, 14]. Then, the phase difference φ across
the junction obeys the equation

I (t) = Jc sin φ + h̄

2eR

dφ

dt
+ h̄C

2e

d2φ

dt2
, (1)

where I (t) is the total current through the junction, and R, C
and Jc are the resistance, capacitance and critical current of the
junction. If (2e/h̄)Jc R2C � 1, we can neglect the capacitance
C in equation (1) [2, 6, 7, 14]. Then, the evolution of the
phase difference φ across the superconducting junction can be
described by the equation [2, 6, 7, 14]

h̄

2eR

dφ

dt
+ Jc sin φ = I (t). (2)

After considering the thermal noise ξ(t), and feeding an
ac oscillatory drive current (time-periodic signal) A cos(ωt)
and a dc constant bias current I0 to the junction, i.e. I (t) =
ξ(t) + A cos(ωt) + I0, equation (2) is

h̄

2eR

dφ

dt
+ Jc sin φ = ξ(t) + A cos(ωt) + I0, (3)

where A and ω are the amplitude and frequency of the ac
oscillatory drive, and ξ(t) is the thermal Gaussian white noise
with zero mean and correlation function 〈ξ(t)ξ(τ )〉 = 2Dδ(t−
τ ) (the noise strength D = kBT/R, where kB is the Boltzmann
constant and T the temperature).

Below we transform equation (3) into a dimensionless
form. Since the capacitance C = 0, we cannot use
the Josephson plasma frequency ωp = [2eJc/(h̄C)]1/2 to
introduce the timescale [11, 15]. But now we can use the
characteristic frequency of the junction, ωc = 2eJc R/h̄ [15].
So, here we introduce the timescale τ0 = 1/ωc = h̄/(2eR Jc).
After that, equation (3) can be transformed into the following
dimensionless form:

dφ

dt ′ = − sin(φ) + η(t ′) + a cos(ω′t ′) + i0, (4)

in which t ′ = t/τ0 with τ0 = h̄/(2eR Jc), η(t ′) is a
dimensionless Gaussian white noise whose strength is D′ =
4ekBT/(Jch̄), a = A/Jc, ω′ = τcω and i0 = I0/Jc.

The Fokker–Planck equation of equation (4) for the
probability density P(φ, t ′) can be easily obtained. But we
cannot get its analytical solution, even in the stationary state,
since the detailed balance is broken and the probability flux is
not zero (of course, we can solve the Fokker–Planck equation
using numerical methods). Here, we carry out the numerical
simulation directly using the Langevin equation (4). The
numerical algorithm of equation (4) is [16]

φ(t ′ + �t ′) = φ(t ′) + 1
2 (F1 + F2)�t ′ + X (t ′,�t ′), (5)

where F1 = − sin(φ) + a cos(ω′t ′) + i0, F2 = − sin[φ(t ′) +
F1�t ′ + X (t ′,�t ′)] + a cos(ω′t ′) + i0 and X (t ′,�t ′) =

r(t ′)
√

2D′�t ′, with r(t ′) being a Gaussian random number of
zero mean and variance 1.

We define the current J [8, 17] which is averaged over a
sufficiently long time for the average velocity of the variable
φ. Therefore, the current has two different averages. The
first average is performed over ensembles of M (in the paper
we take M = 2000) trajectories starting from different initial
conditions. For every trajectory, we use a different Gaussian
white noise. So, our first average is not only over the initial
conditions but also over the realizations of the noise. For a
fixed time t ′

i , we can obtain the first average (i.e. the average
velocity) vi = (1/M)

∑M
j=1 dφ j(t ′

i )/dt ′
i . The second average

is a time average (the time step is taken as �t ′ = 0.001). In
order to guarantee that the system is in the stationary state, the
time average is taken after t ′ = 1000 (this average is taken
from t ′ = 1000 to 2000). Then we have a discrete finite set of
N = 106 different times t ′

i . The current is J = 1/N
∑N

i=1 vi .
Some explanations for the current J defined by us are

given below. (1) The current J defined by us does not refer
to the electrical current, but to the time average of the average
velocity of φ (i.e. J = 〈dφ/dt〉s in which 〈 〉s means the
average over the initial conditions, the noise and the time for
the stationary state [8]). (2) For the net voltage 〈V 〉s, we
know that 〈V 〉s = (h̄/2e)〈dφ/dt〉s [2, 3, 8], so we can get
〈V 〉s = (h̄/2e)J . (3) For the stationary probability current Jspc

of equation (4), it satisfies 〈dφ/dt〉s = L Jspc, where L is the
spatial period of the system (see equation (11) of [19]), so for
equation (4) we can get its stationary probability current Jspc =
J/(2π). In a word, the current J defined by us in the present
paper can represent the net voltage of the junction or the
stationary probability current of equation (4) (or equation (7)).

Based on the algorithm equation (5), in figure 1, we plot
some results of our numerical simulations for J , which is
proportional to the net voltage of the junction and the stationary
probability current of equation (4), versus the natural logarithm
(ln) of the frequency ω′ of the time-periodic signal for different
values of the noise strength D′ (D′ = 0, 0.001, 0.01 and
1), with the other parameters i0 = 0.3 and a = 2. From
this figure, we can see that, at the maximum positions of
J as a function of the driving frequency, on increasing the
noise’s strength, the values of J can be decreased; while at
the minimum positions, with the increase of the noise strength,
the values of J can be increased. So, we call the phenomenon
in figure 1‘noise-induced multi-decrease and multi-increase of
net voltage (or stationary probability current)’ (NMMNV or
NMMSPC). Here, ‘multi-’ denotes that the net voltage (or the
stationary probability current) can be decreased and increased
several times (more than two times), which can be observed in
figure 1. Now the nonlinearity of the net voltage of the junction
(or stationary probability current of equation (4)) depending on
the driving frequency leads to the appearance of several peaks
and wells of the net voltage (or stationary probability current)
versus the driving frequency.

Here, the noise-induced decrease of the net voltage (or
the stationary probability current for equation (4)) corresponds
to the prolongation of the escape time (or mean first passage
time, or exit time) (see footnote 1) for the particles to escape
over the fluctuating potential barrier with the increase in
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Figure 1. J as a function of the ln of the driving frequency ω′ for
equation (4), with different values of the noise’s strength D′ (D′ = 0,
0.001, 0.01 and 1) and the other parameters i0 = 0.3 and a = 2.

the noise strength, which is called ‘noise-enhanced stability
(NES)’ [20–22]. For the NES phenomenon, a maximum for
the mean first passage time (MFPT) versus the noise’s strength
can appear for most cases [20–22]. To find if a minimum is also
present for J versus the noise’s strength D′ (the minimum for
J versus the noise’s strength corresponds to the maximum for
the MFPT versus the noise’s strength), in figure 2 we plot some
results of J versus the ln of the noise’s strength D′ for different
values of the driving frequency (ω′ = 0.713, ω′ = 0.392
and ω′ = 0.262) with the other parameters i0 = 0.3 and
a = 2. This figure shows that the net voltage (or the stationary
probability current for equation (4)) versus the noise’s strength
has a ‘well’, which accords with the NES phenomenon that
the escape time over the fluctuating potential barrier has a
maximum as a function of the noise’s strength. So, we call
this phenomenon NES for the stationary probability current
(NES-SPC). Moreover, from figure 2, we can see that, in the
vicinity of the right-hand side of the well, on increasing the
noise’s strength, the net voltage (or the stationary probability
current for equation (4)) can be increased; while in the vicinity
of the left-hand side of the well, with an increase of the
noise’s strength, the net voltage (or the stationary probability
current for equation (4)) can be decreased. So, figure 2
can clearly show the emergence of the decrease and increase
of the net voltage (or the stationary probability current for
equation (4)) induced by the thermal noise, even though the
multi-decrease and multi-increase of the net voltage (or the
stationary probability current for equation (4)) are absent in
this figure.

Of course, in the absence of noise, no NMMNV (or
NMMSPC) phenomenon or NES-SPC phenomenon appear. In
addition, our study shows that the NMMNV (or NMMSPC)
phenomenon and the NES-SPC phenomenon can only emerge
for certain values of the periodic-driving frequency and the
periodic-driving amplitude. Thus, the noise and the external
periodic-oscillatory drive are ingredients for the appearance
of the NMMNV (or NMMSPC) phenomenon and the NES-
SPC phenomenon of our overdamped Josephson junction
model (i.e. equation (3)). Up to now (to our knowledge),
the NMMNV (or NMMSPC) phenomenon and the NES-
SPC phenomenon reported by us in this paper are the first

Figure 2. J versus the ln of the noise’s strength D′ for equation (4),
with different values of the driving frequency (ω′ = 0.713,
ω′ = 0.392 and ω′ = 0.262) and the other parameters i0 = 0.3 and
a = 2.

observation for the net voltage in a Josephson junction (or
for the stationary probability current in a spatially periodic
symmetric system). It remains to be studied whether they exist
in the spatially periodic asymmetric systems driven by noise
(our model for the Josephson junction belongs to the spatially
periodic symmetric systems [23]).

3. Underdamped case

If the capacitance of the Josephson junction cannot be
neglected, after feeding the junction with an ac oscillatory drive
current Iac = A cos(ωt) and a dc constant bias force current
Idc = F , and considering the thermal noise ξ(t) that is the
same as the one in equation (3), from equation (1) one can get

h̄C

2e

d2φ

dt2
+ h̄

2eR

dφ

dt
+ Jc sin φ = A cos(ωt) + F + ξ(t). (6)

In order to make a detailed investigation of equation (6),
we transform it into a dimensionless form. Here we adopt the
dimensionless form for equation (6) from [11] and [15]. In this
case, the dimensionless form of equation (6) is

d2φ

dt ′2 + γ
dφ

dt ′ = − sin(φ) + A0 cos(ω′t ′) + F0 + ζ(t ′), (7)

where t ′ = t/τ0 with τ0 = 1/ωp = √
h̄C/(2eJc) (ωp is the

Josephson plasma frequency), γ = τ0/τr = τ0/RC (τr is the
relaxation time), A0 = A/Jc, ω′ = τ0ω, F0 = F/Jc and
ζ(t ′) is a dimensionless Gaussian white noise whose strength
is D0 = 2kBT/(R J 2

c τ0).
The Fokker–Planck equation (FPE) for the probability

density of equation (7) can be found easily. But we cannot
get its analytical solution, since the probability flux is nonzero
and the detailed balance is broken (of course, we can solve
the FPE using numerical simulation). Here, we carry out our
numerical simulation directly using the Langevin equation (7).
According to [16], the numerical algorithm of equation (7) can
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Figure 3. J versus the ln of the driving frequency ω′ for
equation (7), with different values of the noise’s strength D0

(D0 = 0.00359, 0.018 and 0.0359) and the other parameters
γ = 0.143, F0 = 0.0637 and A0 = 0.668.

be obtained:

φ(t ′ + �t ′) = φ(t ′) + 1
2 (y(t ′) + F ′′)�t ′,

y(t ′ + �t ′) = y(t ′) + [−γ 1
2 (y(t ′) + F ′′) − 1

2 (F ′
1 + F ′′

2 )

+ A0 cos(ω′t ′) + F0]�t ′ + X (t ′,�t ′), (8)

in which y(t ′) = dφ(t ′)/dt ′, F ′′ = y(t ′) + [−γ y(t ′) −
F ′

1 + A0 cos(ω′t ′) + F0]�t ′ + X (t ′,�t ′), F ′
1 = sin(φ(t ′)),

F ′′
2 = sin(φ(t ′) + y(t ′)�t ′) and X (t ′,�t ′) = r(t ′)

√
2D0�t ′,

with r(t ′) being a Gaussian random number of zero mean and
variance 1.

Based on the numerical algorithm equation (8), in figure 3
we plot some results of our numerical simulations for J
(which is proportional to the net voltage of the junction
and the stationary probability current of equation (7)) as a
function of the ln of the driving frequency ω′ for different
values of the noise’s strength D0 (D0 = 0.003 59, 0.018
and 0.0359), with the other parameters γ = 0.143, F0 =
0.0637 and A0 = 0.668. From figure 3, we can observe
that, in the vicinity of the maxima for J versus the driving
frequency, on increasing the noise’s strength, the net voltage
(or the stationary probability current of equation (7)) can be
decreased, which accords with the NES phenomenon for the
escape time of the particles to escape over the fluctuating
potential barrier (here that the net voltage (or the stationary
probability current of equation (7)) is decreased corresponds to
that the escape time is prolonged); while in the vicinity of the
minima for J versus the driving frequency, with the increase of
the noise strength, the net voltage (or the stationary probability
current of equation (7)) can be increased. Thus, the NMMNV
(or NMMSPC) phenomenon found by us in section 2 is also
present for the underdamped case of the Josephson junction.

Moreover, one knows that, for the NES phenomenon, a
maximum for the escape time as a function of the noise’s
strength can appear in most cases [20–22]. To find this
phenomenon for the net voltage (or the stationary probability
current of equation (7)) as a function of the noise’s strength,
in figure 4, we depict some curves of J versus the common
logarithm (log) of the noise’s strength D0 for different values

Figure 4. J versus the common logarithm (log) of the noise’s
strength D0 for equation (7), with different values of the driving
frequency ω′ (ω′ = 0.584, ω′ = 0.626 and ω′ = 0.678) and the other
parameters γ = 0.143, F0 = 0.0637 and A0 = 0.668.

of the driving frequency ω′ (ω′ = 0.584, ω′ = 0.626 and ω′ =
0.678) with the other parameters γ = 0.143, F0 = 0.0637
and A0 = 0.668. This figure clearly shows the emergence
of a minimum for the net voltage (or the stationary probability
current of equation (7)) as a function of the noise’s strength (the
minimum for J corresponds to the maximum for the escape
time). So, the NES-SPC phenomenon is also present for the
underdamped case. In addition, in the present paper, what we
are more interested in is the decrease and increase of the net
voltage induced by the thermal noise. From figure 4, we can
observe that, on the left-hand side of the well, with the increase
of the noise strength, there are some certain regions where the
net voltage can be decreased; while on the right-hand side of
the well, with increasing the noise strength, the net voltage can
be increased. So, figure 4 can be a clear representation for
the appearance of the decrease and increase of the net voltage
induced by the thermal noise. Our further study shows that, as
in section 2 for the overdamped case of the Josephson junction,
for the underdamped case, the oscillatory drive and the thermal
noise are the ingredients for the emergence of the NMMNV (or
NMMSPC) phenomenon and the NES-PC phenomenon.

4. Conclusion and discussion

In conclusion, in this paper, we have reported a phenomenon of
the noise-induced multi-decrease and multi-increase of the net
voltage and a phenomenon of noise-enhanced stability for the
stationary probability current (or net voltage) in the Josephson
junction for the overdamped case and the underdamped case
simultaneously. The net voltage can be decreased and
increased several times, as a function of the driving frequency,
by increasing the thermal noise’s strength at the peak positions
and the well positions, respectively. The net voltage can
represent a minimum as a function of the thermal noise’s
strength. Although our results were obtained by investigating
the net voltage in the superconducting junction, they can
be applied to systems whose differential equations satisfy
equation (3) or (6) (or equation (4) or (7)). In addition,
the results found by us for equations (4) and (7) belong to
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the transport of the particles (or para-particles) caused by
the symmetry breaking in the spatially periodic systems [23],
which has recently attracted a great deal of attention in a variety
of contexts [23–27]. So, it remains to be studied whether
the NMMSPC phenomenon and the NES-SPC phenomenon
for the flux of the particles (or para-particles) exist in the
other spatially periodic systems, such as the transport of cold
atoms [24, 25], the transport of solitons in Bose–Einstein
condensates [26], the transport of biological and artificial
molecular motors [27], and so on.

In addition, we have noted that the NES phenomenon of
the escape time for particles to escape over the fluctuating
potential barrier in a Josephson junction has been investigated
in [28] for the overdamped case and recently studied in [29]
for the underdamped case. In the present paper, we have found
the NES-SPC phenomenon for the net voltage in a Josephson
junction.

Finally, it is worthwhile mentioning that, for the numerical
simulations of equations (4) and (7), using the RKII (stochastic
Runge–Kutta II) method [16] and using the Euler method,
we can get the same results (i.e. figures 1–4 almost remain
unchanged, especially for the physical meanings). In
addition, it should be stressed that our results (i.e. the
NMMNV phenomenon and the NES-SPC phenomenon) are
only physically theoretical, and they remain to be found
experimentally.
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